Future deforestation projections: comparison of different approaches

Aline Mosnier

Ecosystems Services and Management Program

www.globiom.org
Introduction
What is a model?

- A simplification of the reality where we try to single out the most important components of the system and to determine how they are related to each other.
What is a model for?

- A model is created to answer a specific question: depending on the question we want to address, we have to choose the appropriate model.

- Models are wrong –due to their simplification - but they could be useful to better understand a complex reality (mechanisms, indirect effects,...)

- Possible to isolate the impact of a single factor while in the reality since many things evolve in parallel it is hard to identify the impacts of one single factor.

- Give estimations on the future under different conditions than past and present and discuss plausible futures and main uncertainties ➔ prospective exercise.

- It is a tool to help action!
Challenges in the context of REDD+

- REDD+ is an international mechanism that offers financial compensation to developing countries who reduce their emissions from deforestation and forest degradation and enhance carbon stocks.

- 2 principles are very important:
 - **additionality** = REDD+ must subsidize activities leading to emissions reduction that would not be observed otherwise.
 - **performance-based payments** = require first the establishment of a counterfactual – the business as usual (BAU) baseline - which is the level of emissions that would occur without REDD+ activities.

- Methodology to compute baselines should be transparent, complete, consistent, comparable and accurate.
Challenges in the context of REDD+

- What will be the level of deforestation and emissions from deforestation, forest degradation and enhancement of carbon stocks without REDD+ policies?
 - Depends on the total amount of forest converted to other uses ➔ demand for forest land
 - Depends on the forest carbon content ➔ localization of the deforestation is important due to spatial heterogeneity in forest carbon content
Approaches to compute future deforestation and related emissions

- Extrapolation of past trends
- Set of assumptions
- Macroeconomic models
- Regression models
- GLOBIOM approach
Extrapolation of past trends

Brazil’s projected reduction in deforestation (green bars) and actual rates (brown bars) measured in km² per year

Average 1995-2006 = 19.500 km² (baseline)
McKinsey approach does not use a model but rather **a set of assumptions** and produce emissions projection at the national level:

- Identification of major causes of deforestation and forest degradation and levers of carbon sequestration
- Link of these factors to the growth of the country’s economic sectors and the national and regional demographics
- Each identified factor is projected until 2030 to derive the number of deforested and degraded hectares
- Emissions from deforestation and degradation volumes by ecosystem and activity are computed based on scientific literature and interviews with expert
McKinsey approach

Abatement cost
€ per tCO₂e

- Residential electronics
- Residential appliances
- Retrofit residential HVAC
- Tillage and residue mgmt
- Insulation retrofit (residential)
- Cars full hybrid
- Waste recycling
- Cars plug-in hybrid
- Degraded forest reforestation
- Nuclear
- Pastureland afforestation
- Degraded land restoration
- 2nd generation biofuels
- Building efficiency new build
- Low penetration wind
- Gas plant CCS retrofit
- Coal CCS retrofit
- Iron and steel CCS new build
- Coal CCS new build
- Power plant biomass co-firing
- Reduced intensive agriculture conversion
- High penetration wind
- Solar PV
- Solar CSP
- Solar PV
- Solar CSP

Abatement potential
GtCO₂e per year

- Small hydro
- 1st generation biofuels
- Rice management
- Efficiency improvements other industry
- Electricity from landfill gas
- Clinker substitution by fly ash
- Cropland nutrient management
- Motor systems efficiency
- Insulation retrofit (commercial)
- Lighting – switch incandescent to LED (residential)

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.0
Existing models to assess future deforestation

<table>
<thead>
<tr>
<th>Name and institution</th>
<th>Description</th>
<th>Region</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUE (Wageningen University)</td>
<td>Non-spatial demand module + spatially explicit allocation procedure</td>
<td>Klang-Langat watershed in Malaysia Brazil</td>
<td>Verburg et al. 2002</td>
</tr>
<tr>
<td>DINAMICA (Federal University of Minas Gerais)</td>
<td>Non-spatial demand module + cellular automata</td>
<td>Amazon</td>
<td>Soares-Filho et al. 2006</td>
</tr>
<tr>
<td>T21 (Millennium Institute)</td>
<td>Dynamic system model</td>
<td>Africa, DRC</td>
<td>Ochola 2005</td>
</tr>
<tr>
<td>Von Thunen Land rent model</td>
<td>Von Thunen Land rent model</td>
<td>DRC</td>
<td>Knoke et al. 2013; Phelps et al. 2013</td>
</tr>
</tbody>
</table>
System dynamic approach

The **T21 model** is a dynamic macroeconomic model which employs a system dynamic approach: evaluation of sets of *simultaneous differential equations* which calculate the value of a variable at the next time step given the values of other causal variables at the current time step.

- Major production sectors (industry, agriculture and services) characterized by Cobb-Douglas production functions with inputs of resources (e.g. land), labor, capital and technology.

- Demand is based on population and per capita income growth and distributed among sub-sectors using Engel’s curves.
System dynamic approach

T21 model
- Feedback loops from one sphere to another (e.g. social sphere influences population growth which influences demand and labor productivity which affects the level of production)
The CLUE model

The **CLUE model** uses empirically quantified relations between land use and its driving factors in combination with dynamic modelling of competition between land use types.

- A **non-spatial demand module** calculates the area change for all land use types at the aggregate level: based on a range of methods, including extrapolation of past trends when necessary corrected for changes in population growth and/or diminishing land resources.

- A **spatially explicit allocation procedure** translates these demands into land use changes at different locations ➔ spatial policies and restrictions, conversion elasticities, conversion matrix, location characteristics (empirically estimated)
The CLUE model

Source: Verburg et al. 2002
The DINAMICA model

The Dinamica model is considered as a cellular automata type model in which the state of each cell depends on the previous state of the cells within a cell neighborhood according to a set of transition rules.

- It uses extrapolation of past trends and adjust them for future infrastructures and change in the governance in the Amazon.

- The spatial transition probability maps depict the probability of a cell at position \((x,y)\) to change from state \(i\) to state \(j\). It is either computed using weights of evidence or logistic regression to select the areas most favorable for each type of transition using spatial variables stored in GIS.
The DINAMICA model

Calculation of the distance from a cell of a particular class to the nearest cell of a different class

Figure 1. The DINAMICA model architecture.

Source: Soares-Filho 2003
The Von Thünen model

The von Thünen model (1910) was one of the first attempts to explore causal mechanisms between economic inputs and geographical patterns.

- It postulates that the location of agricultural activities is driven by two main forces: the transport distance to the market and the cost of the land.

- It predicts that products that are more profitable will be the closest to the city followed by products with high transportation costs.
GLOBIOM approach

GLOBIOM is a global partial equilibrium model with a bottom-up approach.

- Demand is driven by population, GDP growth and food preferences at the regional aggregated level. Both domestic demand and international demand for food, feed, wood and bioenergy are computed endogenously.

- Land use change depends on the expected benefits of the land, the production costs, the transportation costs, technological change, conversion costs and a transition matrix. It is modeled at the grid level (~number of hectares in a 50x50km pixel).

- Prices are endogenously computed
Conclusion
Conclusion

- Good initial land cover map is always required

- Population and GDP growth are the most widely used determinants for aggregated demand for forest land and market accessibility, land suitability, and distance are the most widely used determinants for spatial patterns of deforestation

- Spatially explicit models are usually very dependent on past deforestation level and patterns

- More macro models of deforestation are usually more comprehensive in the description of feedbacks between different sectors of the economy but miss local constraints which influences a lot future deforestation
Conclusion

- Challenges in the:
 - Integration of scales: global/national/local
 - Integration of sectors: agriculture/forestry/industry/services
 - Representation of institutional components e.g. governance
 - Link to economic development and household income change